翻訳と辞書 |
Föppl–von Kármán equations : ウィキペディア英語版 | Föppl–von Kármán equations The Föppl–von Kármán equations, named after August Föppl〔Föppl, A., "Vorlesungen über technische Mechanik", ''B.G. Teubner'', Bd. 5., p. 132, Leipzig, Germany (1907)〕 and Theodore von Kármán,〔von Kármán, T., "Festigkeitsproblem im Maschinenbau," ''Encyk. D. Math. Wiss.'' IV, 311–385 (1910)〕 are a set of nonlinear partial differential equations describing the large deflections of thin flat plates.〔E. Cerda and L. Mahadevan, 2003, "Geometry and Physics of Wrinkling" (Phys. Rev. Lett. 90, 074302 (2003) )〕 With applications ranging from the design of submarine hulls to the mechanical properties of cell wall,〔http://focus.aps.org/story/v27/st6〕 the equations are notoriously difficult to solve, and take the following form: 〔"Theory of Elasticity". L. D. Landau, E. M. Lifshitz, (3rd ed. ISBN 0-7506-2633-X)〕 : where is the Young's modulus of the plate material (assumed homogeneous and isotropic), is the Poisson's ratio, is the thickness of the plate, is the out–of–plane deflection of the plate, is the external normal force per unit area of the plate, is the Cauchy stress tensor, and are indices that take values of 1 or 2. The 2-dimensional biharmonic operator is defined as〔The 2-dimensional Laplacian, , is defined as 〕 : 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Föppl–von Kármán equations」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|